# Chiral Synthesis of Polyketide-derived Natural Products. Part 6. ${ }^{1}$ Chemical Correlation of Chiral Synthons, Derived from d-Glucose for the Synthesis of Erythromycin A, with Chemical Cleavage Products of the Natural Antibiotic 

Yuji Oikawa, Takao Nishi, and Osamu Yonemitsu*<br>Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan


#### Abstract

In order to prove unequivocally the structures and configurations of the two synthesized segments, (3) and (4), for the synthesis of erythromycin A (1) from D-glucose (2), chemical cleavage of dihydroerythronolide $A(5)$ at the lactone and the 5,6 -vicinal diol positions was examined via selective protection of hydroxy groups, lithium aluminium hydride reduction, and lead tetra-acetate oxidation. The two segments derived from (5), ( $2 R, 3 S, 4 S, 5 R, 6 R, 7 R$ )-1-hydroxy-5,6-isopropylidenedioxy-3,7-bis-(4-methoxybenzyloxy)-2,4,6-trimethylnonane (3) and (2S,3R,4S)-3,5-isopropylidenedioxy-2,4dimethylpentanal (4), were completely identical in their spectral data with the respective synthesized segments.


As part of our continuing efforts to synthesize the well known antibiotic erythromycin A (1) from D-glucose (2), one of the most readily available chiral starting materials, two chiral synthons, (3) and (4), corresponding to the left-hand (C-7-C$15)$ and the right-hand ( $\mathrm{C}-1-\mathrm{C}-5$ ) segments of dihydroerythronolide A (5), respectively, were synthesized by virtue of some stereoselective reactions in acyclic systems and MPM (4methoxyphenylmethyl) protection of hydroxy functions. ${ }^{2}$ Although details of the synthesis of (3) and (4) have been reported in the preceding papers, ${ }^{1,3}$ it was still necessary to prove unequivocally their structures and, in particular, configurations.

The chemical correlation of the synthesized segments (3) and (4) with the segments derived from natural erythromycin A (1) itself by selective cleavage at the lactone and 5,6 -vicinal diol positions of compound (5) was expected to provide conclusive proof. In order to obtain the segments, it was first necessary either to protect selectively another vicinal diol group at C-11 and C-12 or to remove selectively the protection for the 5,6-diol group in the case where both vicinal groups were previously protected. We report here a chemical cleavage of compound (1) into the desired segments via the latter method for the purpose of chemical correlation with the synthesized segments (3) and (4).

## Results and Discussion

When dihydroerythronolide A (5), ${ }^{4}$ derived from erythromycin A (1) via a four-step conversion, was treated with 4methoxyacetophenone dimethyl acetal ${ }^{5}$ in the presence of camphor-10-sulphonic acid (CSA) at room temperature, acetalization of (5) proceeded quite smoothly to give the mono-p-methoxyphenyl (MP)-ethylidene acetal (6) as the sole product. A vicinal diol group either at C-5 and C-6 or at C-11 and $\mathrm{C}-12$ was protected, because the three remaining secondary hydroxy groups of compound (6) were readily acetylated to give the triacetate (7) by treatment with acetic anhydride in the presence of 4-dimethylaminopyridine (DMAP). If the acetal group was located either at C-3 and C-5 or at C-9 and C-11, the remaining two secondary hydroxy groups would have been acetylated to give a diacetate. The position of the acetal group was finally determined as follows. The unprotected vicinal diol group of (6) was cleaved with lead tetra-acetate, followed by acetylation of the resultant tricarbonyl compound (8) to give the monoacetate (9). If the acetal group in (6) was present at C-11

(3)

(4)
$M P M=4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$


Erythromycin A
$R^{1}=D$-desosaminyl
$R^{2}=L$-cladinosyl
(1)
and C-12, a hemiacetal (10) would have been obtained. In the n.m.r. spectrum of (9), two low-field singlet methyl signals at $\delta_{\mathbf{H}}$ 2.12 and 2.15 assignable to acetate and methyl ketone groups, respectively, were observed. Such signals could not be expected for compound (10).

Selective protection of the remaining vicinal diol group at C 11 and C-12 was next examined, and the isopropylidene group was found to be favourable because it is rather stable under weakly acidic conditions for removal of the MP-ethylidene protection at C-5 and C-6. When compound (6) was treated with acetone dimethyl acetal in acetone in the presence of CSA at $20^{\circ} \mathrm{C}$ for 2.5 h , the acetonide (11) was obtained in high yield, but prolonged treatment under the same conditions was responsible for the acetal exchange at C-5 and C-6 to give gradually a diacetonide. $\dagger$ The two remaining secondary hydroxy groups in (11) were readily acetylated to afford the diacetate, thus confirming the position of the isopropylidene group.

The lactone ring of diol (11) was then cleaved by treatment with lithium aluminium hydride and the open-chain tetraol (12)
$\dagger$ The 5,6:11,12-di- $O$-isopropylidene derivative of dihydroerythronolide A (5) was synthesized by Woodward et al., though no conditions were given; R. B. Woodward et al., J. Am. Chem. Soc., 1981, 103, 3213.
was readily obtained in almost quantitative yield. The tetraol character of this compound was confirmed by the preparation of a tetra-acetate.

In order to split the carbon chain selectively between C-5 and C-6 of compound (12) and to lead to the left-hand segment (3), the 1,3 -diol at $\mathrm{C}-1$ and $\mathrm{C}-3$ was first protected as the sixmembered acetonide (13), followed by $p$-methoxybenzyl (MPM) protection of the two isolated hydroxy groups at C-9 and C-13 by treatment with $p$-methoxybenzyl chloride ( MPMCl ) in the presence of dimsylsodium. ${ }^{2}$ The resultant fully protected compound was then treated with a rather dilute acid [a mixture of 0.4 M -hydrochloric acid and tetrahydrofuran (THF)] at $50^{\circ} \mathrm{C}$ to remove selectively the MP-ethylidene protection at $\mathrm{C}-5$ and $\mathrm{C}-6$. Although the six-membered acetonide at $\mathrm{C}-1$ and $\mathrm{C}-3$ was also cleaved under these conditions, the five-membered acetonide at $\mathrm{C}-11$ and $\mathrm{C}-12$ as
well as two MPM groups at C-9 and C-13 remained unchanged, and the tetraol (14) was obtained in reasonable yield.

Treatment of (14) with lead tetra-acetate gave almost quantiatively two segments, the ketone (15) consisting of the $\mathrm{C}-6-\mathrm{C}-15$ unit and the hemiacetal (16) consisting of the $\mathrm{C}-1-$ C-5 unit. As expected, selective cleavage of the carbon chain between C-5 and C-6 was thus achieved (Scheme 1).

Baeyer-Villiger oxidation seemed at first to provide the most convenient way for the conversion of (15) into the required segment (3). However, all attempts with peracids were unsuccessful and only complex mixtures were obtained. Treatment of (15) with phenylmagnesium bromide in THF gave almost quantitatively a crude mixture of benzyl alcohols (17) which, without further purification, was readily dehydrated into a mixture of olefins (18) on heating with trifluoroacetic anhydride in the presence of DMAP in benzene. According to

(5)

(6) $R=H$
(7) $R=A c$

(9)

(8)

(10)

(12)

(13)



$$
\begin{aligned}
\text { MP } & =4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \\
M P M & =4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}
\end{aligned}
$$

Scheme 1. Reagents: (i) $\mathrm{MeC}(\mathrm{OMe})_{2} \cdot \mathrm{MP}, \mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{PhH}$; (iii) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$; (iv) $\mathrm{LiAlH}_{4}$; (v) MPMCl, NaH then $0.4 \mathrm{M}-\mathrm{HCl}, \mathrm{THF}$
its n.m.r. spectrum, the ratio of the exo $\left(\delta_{H} 5.03,5.30\right)$ and the expected endo ( $\delta_{\mathrm{H}} 5.82$ ) isomers was 2.4:1.

Since ozonolysis followed by sodium borohydride treatment gave only complex products, the olefin mixture (18) was then subjected to $\mathrm{OsO}_{4}$ oxidation. Treatment with osmium tetraoxide and $N$-methylmorpholine $N$-oxide (NMO) in aqueous acetone, ${ }^{6}$ followed by column chromatography on silica gel, gave the expected diol (19) and its isomer (20) in 21 and $56 \%$ yield, respectively. The vicinal diol (19) was cleaved with lead tetra-acetate and the resultant aldehyde (21) was reduced with sodium borohydride to afford the alcohol (3) as an oil (Scheme 2). The n.m.r. and mass spectra and specific optical


Scheme 2. Reagents: (i) PhMgBr ; (ii) $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, DMAP; (iii) $\mathrm{OsO}_{4}$, NMO; (iv) $\mathrm{Pb}(\mathrm{OAc})_{4}$; (v) $\mathrm{NaBH}_{4}$; (vi) $\mathrm{LiALH}_{4}$, then $\mathrm{Ac}_{2} \mathrm{O}$, DMAP. Wavy bond indicates diastereoisomeric mixture
rotation of compound (3) were completely identical with those of the alcohol (3) synthesized from D-glucose (2) as shown in the previous papers. ${ }^{3}$

The hemiacetal (16) is a synthetic equivalent of the aldehyde (right-hand segment) (4) and its structure was confirmed by conversion into the meso-triacetate (22) ${ }^{1}$ via lithium aluminium hydride reduction and acetylation.

Another chemical cleavage of diol (13) gave the aldehyde (4) itself as follows. In order to obtain (4) from (13), it was necessary to remove the MP-ethylidene protection at C-5 and $\mathrm{C}-6$ while leaving intact the six-membered acetonide at $\mathrm{C}-1$ and $\mathrm{C}-3$. When compound (13) was treated with a large excess of sodium in liquid ammonia, the MP-ethylidene group was selectively removed to yield the tetraol (23), which gave a
triacetate under the usual acetylation conditions in the presence of DMAP since one tertiary hydroxy group at C-6 remained unacetylated.

Lead tetra-acetate oxidation of tetraol (23) gave the intramolecular acetal (24) and the expected aldehyde (4) as oils (Scheme 3). The acetal (24) has neither carbonyl- nor hydroxy-


Scheme 3. Reagents: (i) $\mathrm{Na}-$ liq. $\mathrm{NH}_{3}$; (ii) $\mathrm{Pb}(\mathrm{OAc})_{4}$
group bands in its i.r. spectrum, and is a rather rigid molecule with reasonable coupling constants for the hydrogens at C-9 (dd, $J 2.5$ and 11.0 Hz ) and $\mathrm{C}-11(\mathrm{~d}, J 9.0 \mathrm{~Hz})$ as expected from inspection of stereomodels. The aldehyde (4) is completely identical in its i.r. and n.m.r. spectra and specific optical rotation with the aldehyde (4) synthesized from D-glucose (2) as shown in the preceding paper. ${ }^{1}$

## Experimental

M.p.s were measured on a Yamato MP-1 micro melting point apparatus and are uncorrected. Optical rotations were measured with a JASCO DIP-4 digital polarimeter. I.r. spectra were recorded on a JASCO IRA-2 spectrophotometer. Lowand high-resolution mass spectra were taken on a JEOL JMS D300 or JEOL JMS-01 SG spectrometer. ${ }^{1}$ H N.m.r. spectra were recorded on a JEOL JNM FX-100 or JEOL JNM FX-200 instrument.

5,6-O-[1-(4-Methoxyphenyl)ethylidenedihydroerythronolide A (6).-A mixture of dihydroerythronolide A (5) $\mathbf{( 6 . 0} \mathrm{g}, 14.3$ mmol), p-methoxyacetophenone dimethyl acetal $(10.0 \mathrm{~g}, 51.0$ $\mathrm{mmol})$, and CSA $(2.0 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{ml})$ was stirred at room temperature for 20 h , after which time the reaction mixture was neutralized with $\mathrm{Et}_{3} \mathrm{~N}$ and evaporated under reduced pressure. The residue was chomatographed on a silica gel column with n -hexane-EtOAc (2:1) as eluant to give the product (6) as an amorphous solid ( $6.6 \mathrm{~g}, 83.7 \%$ ) (Found: $M^{+}-\mathrm{CH}_{3}, 537.3024$. $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{9}$ requires $\mathrm{m} / \mathrm{z}, 537.3051$ ); $[\alpha]_{\mathrm{D}}{ }^{20}+13.8^{\circ}$ (c 1.8 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) 0.82(3 \mathrm{H}$, s), $0.91(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 1.04(3 \mathrm{H}, \mathrm{s}), 1.05(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.25$ ( $3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}$ ), $1.31(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.34(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz})$, $1.60(3 \mathrm{H}, \mathrm{s}), 1.45-1.82(5 \mathrm{H}, \mathrm{m}), 1.85-2.20(2 \mathrm{H}, \mathrm{m}) 2.80,(1 \mathrm{H}$, $\mathrm{dq}, J 8.0,10.0 \mathrm{~Hz}), 3.06(1 \mathrm{H}, \mathrm{dd}, J 2.5,9.0 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $3.80(3 \mathrm{H}, \mathrm{s}), 3.92(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.74(1 \mathrm{H}, \mathrm{dd}$, $J 2.0,10.5 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, and $7.39(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$; $m / z 537\left(M^{+}-15,13 \%\right), 519(5), 402(4.5), 241(14), 151$ (90), and 135 (100).

3,9,11-Tri-O-acetyl-5,6-O-[1-(4-methoxyphenyl)ethylidene]dihydroerythronolide $A(7)$.-A mixture of the tetraol (6) $(10 \mathrm{mg})$, $\mathrm{Ac}_{2} \mathrm{O}$ ( 2 drops, 24 mg ), DMAP ( 2 mg ), and $\mathrm{Et}_{3} \mathrm{~N}$ ( 3 drops, 33 mg ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ was stirred at room temperature for 5 h . After decomposition of excess of $\mathrm{Ac}_{2} \mathrm{O}$ by the addition of MeOH , the mixture was evaporated under reduced pressure, and the residue was chromatographed on a silica gel column with n-hexane-EtOAc (3:2) as eluant to give the triacetate (7) as an amorphous solid ( 12 mg ), $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1735$ and 1720 sh $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.83(3 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 1.06(3 \mathrm{H}, \mathrm{d}$, $J 6.5 \mathrm{~Hz}), 1.11(6 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.15(3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}), 1.20(3 \mathrm{H}$, s), $1.2-2.1(5 \mathrm{H}, \mathrm{m}), 1.47(3 \mathrm{H}, \mathrm{s}), 2.03(3 \mathrm{H}, \mathrm{s}), 2.13(3 \mathrm{H}, \mathrm{s}), 2.14$ $(3 \mathrm{H}, \mathrm{s}), 2.15-2.70(3 \mathrm{H}, \mathrm{m}), 2.86(1 \mathrm{H}, \mathrm{dq}, J 7.5,10.0 \mathrm{~Hz}), 3.80(3$ H, s), $4.30(1 \mathrm{H}, \mathrm{s}), 4.70(1 \mathrm{H}$, dd, J 3.0, 10.5 Hz ), $4.78(1 \mathrm{H}, \mathrm{dd}, J$ $3.0,9.0 \mathrm{~Hz}), 5.04(1 \mathrm{H}, \mathrm{s}), 5.65(1 \mathrm{H}, \mathrm{dd}, J 1.5,10.5 \mathrm{~Hz}), 6.84(2 \mathrm{H}$, $\mathrm{d}, J 9.0 \mathrm{~Hz}$ ), and $7.40(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}) ; m / z 678\left(M^{+}, 0.7 \%\right), 677$ (0.9), 663 (53), 151 (32), 135 (100), and 43 (75).
(R)-1-Ethyl-2-oxopropyl (2R,3S,4S,5R,6R,8R,9S,10S)-3,9-Dihydroxy-5,6-[1-(4-methoxyphenyl)ethylidenedioxy]-2,4,6,8,10-pentamethyl-11-oxoundecanoate (8).-A mixture of compound (6) ( $20 \mathrm{mg}, 0.036 \mathrm{mmol}$ ) and $\mathrm{Pb}(\mathrm{OAc})_{4}(32 \mathrm{mg}, 0.072$ mmol ) in benzene ( 1 ml ) was stirred at room temperature for 25 min, after which time the reaction mixture was chromatographed on a silica gel column with $n$-hexane-EtOAc (1:1) as eluant to give the oily keto-aldehyde $(8)(8 \mathrm{mg}), \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.95$ $(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}), 1.05(3 \mathrm{H}, \mathrm{d}$, $J 7.0 \mathrm{~Hz}), 1.14(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.33(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.4-2.2$ $(6 \mathrm{H}, \mathrm{m}), 1.57(3 \mathrm{H}, \mathrm{s}), 2.15(3 \mathrm{H}, \mathrm{s}), 2.56(1 \mathrm{H}, \mathrm{m}), 2.82(1 \mathrm{H}$, quintet, $J 8.0 \mathrm{~Hz}$ ), $3.18(1 \mathrm{H}$, br s) $3.81(3 \mathrm{H}, \mathrm{s}), 3.90(1 \mathrm{H}, \mathrm{m}), 3.92$ $(1 \mathrm{H}, \mathrm{d}, J 5.0 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{m}) 4.97(1 \mathrm{H}, \mathrm{dd}, J 5.0,7.5 \mathrm{~Hz}), 6.85$ $(2 \mathrm{H}, \mathrm{d}, 9.0 \mathrm{~Hz}), 7.36(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, and $9.87(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz})$.
(R)-1-Ethyl-2-oxopropyl (2R,3S,4S,5R,6R,8R)-3-Acetoxy-5,6-[1-(4-methoxyphenyl)ethylidenedioxy]-2,4,6,8,10-penta-methyl-11-oxoundec-9(E)-enoate (9).-Compound (8) (8 mg) was acetylated as described above for 20 h . After decomposition of $\mathrm{Ac}_{2} \mathrm{O}$ with MeOH , the mixture was passed through a short silica gel column [n-hexane-EtOAc (1:1)]. Evaporation of the solvent left an oil, which was subjected to preparative t.l.c. on silica gel to give the oily monoacetate (9) ( 3 mg ), $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ 1733 and $1720 \mathrm{sh} \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.86(3 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{t}, J 7.5$ $\mathrm{Hz}), 1.10(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.13(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.19(3 \mathrm{H}, \mathrm{d}, J$ $7.0 \mathrm{~Hz}), 1.35-2.20(2 \mathrm{H}, \mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{s}), 1.83(3 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz})$, $2.12(3 \mathrm{H}, \mathrm{s}), 2.15(3 \mathrm{H}, \mathrm{s}), 2.96(1 \mathrm{H}, \mathrm{dq}, J 7.0,10.0 \mathrm{~Hz}), 3.75(1 \mathrm{H}$, d, $J 3.5 \mathrm{~Hz}$ ), $3.78(3 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{dd}, J 5.0,8.0 \mathrm{~Hz}), 5.25(1 \mathrm{H}$, dd, $J 2.0,9.5 \mathrm{~Hz}$ ), $6.53(1 \mathrm{H}, \mathrm{dd}, J 2.0,10.0 \mathrm{~Hz}), 6.80(2 \mathrm{H}, \mathrm{d}, J 9.0$ $\mathrm{Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, and $9.49(1 \mathrm{H}, \mathrm{s})$.

11,12-O-Isopropylidene-5,6-O-[1-(4-methoxyphenyl)ethylidenedihydroerythronolide A(11).-Acetone dimethyl acetal (2.5 $\mathrm{ml}, 20.3 \mathrm{mmol})$ and CSA $(0.35 \mathrm{~g}, 1.51 \mathrm{mmol})$ were added to a stirred acetone ( 50 ml ) solution of compound ( 6 ) $(1.04 \mathrm{~g} 1.88$ mmol ) at $20^{\circ} \mathrm{C}$. After 2.5 h , the reaction mixture was neutralized with $\mathrm{Et}_{3} \mathrm{~N}$, and evaporated under reduced pressure, and the residue was chromatographed on a silica gel column with $n$-hexane-EtOAc (3:1) as eluant to give the title compound (11) as an amorphous solid ( $1.01 \mathrm{~g}, 90.6 \%$ ) (Found: $M^{+}-\mathrm{CH}_{3}, 577.3418 . \quad \mathrm{C}_{32} \mathrm{H}_{49} \mathrm{O}_{9}$ requires $\mathrm{m} / \mathrm{z}, 577.3363$ ); $[\alpha]_{\mathrm{D}}{ }^{18}+14.3^{\circ}\left(c 2.28\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1725 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}\right) 0.78(3 \mathrm{H}, \mathrm{s}), 0.93(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 1.01(3 \mathrm{H}, \mathrm{d}, J 7.0$ $\mathrm{Hz}), 1.25(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.27(3 \mathrm{H}, \mathrm{s}), 1.30-2.35(8 \mathrm{H}, \mathrm{m}), 1.42$ $(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}), 1.44(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.52(3 \mathrm{H}$, s), $1.63(3 \mathrm{H}, \mathrm{s}), 2.67(1 \mathrm{H}, \mathrm{d}, J 9.5 \mathrm{~Hz}), 2.73(1 \mathrm{H}, \mathrm{dq} J 7.0,10.0$ Hz ), $3.04(1 \mathrm{H}, \mathrm{dt}, J 2.5,9.5 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.98(1 \mathrm{H}, \mathrm{d}, J 10.0$ $\mathrm{Hz}), 4.26(1 \mathrm{H}, \mathrm{s}), 4.32(1 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{dd}, J 3.0,10.0 \mathrm{~Hz}), 6.84$ $(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, and $7.42(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}) ; m / z 577\left(M^{+}-15\right.$, $31 \%$ ), 501 (4), 349 (7), 223 (13), 151 (63), and 135 (100).

The diacetate of compound (11) was an amorphous solid, $\delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{s}), 0.92(3 \mathrm{H}, \mathrm{t}, 7.5 \mathrm{~Hz}), 1.07(6 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz})$, $1.18(3 \mathrm{H}, \mathrm{d}, 6.0 \mathrm{~Hz}), 1.24(3 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}), 1.26(3 \mathrm{H}, \mathrm{s}), 1.35-$ $2.35(7 \mathrm{H}, \mathrm{m}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}, \mathrm{s})$, $2.16(3 \mathrm{H}, \mathrm{s}), 2.90(1 \mathrm{H}, \mathrm{dq}, J 7.5,10.0 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.15(1 \mathrm{H}$, s), $4.30(1 \mathrm{H}, \mathrm{s}), 4.77(1 \mathrm{H}, \mathrm{dd}, J 3.0,9.0 \mathrm{~Hz}), 5.02(1 \mathrm{H}, \mathrm{dd}, J 3.0$, $10.0 \mathrm{~Hz}), 5.47(1 \mathrm{H}, \mathrm{dd}, J 2.0,10.5 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, and $7.40(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}) ; m / z 661\left(M^{+}-15,45 \%\right), 151(25)$, and 135 (100); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1735 \mathrm{sh}, 1730$, and $1720 \mathrm{~cm}^{-1}$.
(2S,3R,4S,5R,6R,8R,9S,10S,11R,12R,13R)-1,3,9,13-Tetra-hydroxy-11,12-isopropylidenedioxy-5,6-[1-(4-methoxyphenyl)-ethylidenedioxy]-2,4,6,8,10,12-hexamethylpentadecane (12).$\mathrm{LiAlH}_{4}(3.0 \mathrm{~g}, 79 \mathrm{mmol})$ was added to a stirred solution of the lactone (11) $(5.6 \mathrm{~g}, 9.45 \mathrm{mmol})$ in THF $(300 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under argon. After 1.5 h , excess of $\mathrm{LiAlH}_{4}$ was decomposed by the successive addition of water, $15 \%$ aqueous NaOH , and more water. Precipitated inorganic salts were filtered off and the filtrate was concentrated under reduced pressure to leave a solid, which was chromatographed on a silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (24:1) as eluant to give the tetraol (12) as an amorphous solid ( $5.5 \mathrm{~g}, 97.6 \%$ ) (Found: $M^{+}-\mathrm{CH}_{3}, 581.3735$. $\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{O}_{9}$ requires $m / z, 581.3675 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) 0.88(3 \mathrm{H}$, d, J 6.5 Hz ), $0.97(3 \mathrm{H}, \mathrm{s}), 0.975(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.02(3 \mathrm{H}, \mathrm{t}, J$ $6.5 \mathrm{~Hz}), 1.10(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.11(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.14(3 \mathrm{H}$, s), $1.3-2.1(8 \mathrm{H}, \mathrm{m}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}), 3.49$ $(1 \mathrm{H}, \mathrm{dd}, J 2.0,10.0 \mathrm{~Hz}), 3.63(2 \mathrm{H}, \mathrm{d}, J 5.0 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.89$ $(1 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{dd}, J 2.0,11.0 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{d}, J 1.5$ $\mathrm{Hz}), 4.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.83(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, and $7.35(2 \mathrm{H}, \mathrm{d}, J 9.0$ Hz ); $m / z 581$ ( $M^{+}-15,20 \%$ ), 447 (6), 379 (7), 241 (20), 151 (86), and 135 (100).

The tetra-acetate of the tetraol (12) was an oil, $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ $1735 \mathrm{sh}, 1725$, and $1720 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz})$, $0.90(3 \mathrm{H}, \mathrm{s}), 0.97(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.02(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.08(3$ $\mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.10(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.21(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s})$, $1.3-2.1(8 \mathrm{H}, \mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s}), 2.10(3$ $\mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}, \mathrm{s}), 2.13(3 \mathrm{H}, \mathrm{s}), 3.51(1 \mathrm{H}, \mathrm{m}), 3.73(1 \mathrm{H}, \mathrm{d}, J 5.5$ $\mathrm{Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.90-3.98(1 \mathrm{H}, \mathrm{dd}, J 5.5,12.0 \mathrm{~Hz}), 4.00-4.09$ $(1 \mathrm{H}, \mathrm{dd}, J 6.5,12.0 \mathrm{~Hz}), 4.85(1 \mathrm{H}$, dd, $J 3.0,9.5 \mathrm{~Hz}), 4.95(1 \mathrm{H}$, dd, $J 4.0,7.0 \mathrm{~Hz}$ ), $5.12(1 \mathrm{H}, \mathrm{dd}, J 2.0,10.0 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{d}, 9.0$ Hz ), and $7.41(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}) ; m / z 749\left(M^{+}-15,55 \%\right)$ and 135 (100).

2S,3R,4S,5R,6R,8R,9S,10S,11R,12R,13R)-9,13-Dihydroxy-1,3:11,12-bis(isopropylidenedioxy)-5,6-[1-(4-methoxylphenyl)-ethylidenedioxy]-2,4,6,8,10,12-hexamethylpentadecane (13).Acetone dimethyl acetal ( 300 mg ) and CSA $(20 \mathrm{mg})$ were added to a stirred solution of compound (12) (175 mg) in acetone (10 ml ) at room temperature. After 10 min , work-up gave the diol (13) as an oil ( $184 \mathrm{mg}, 98.5 \%$ ) (Found: $M^{+}-\mathrm{CH}_{3}$, $621.3970 . \mathrm{C}_{35} \mathrm{H}_{57} \mathrm{O}_{9}$ requires $m / z, 621.3987$ ); $[\alpha]_{\mathrm{D}}{ }^{23}-42.0^{\circ}(c$ 1.6 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) 0.86(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 0.94(3$ $\mathrm{H}, \mathrm{s}), 0.96(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.03(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 1.05(3 \mathrm{H}, \mathrm{d}$, $J 6.5 \mathrm{~Hz}), 1.13(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.3-2.1(8 \mathrm{H}, \mathrm{m})$, $1.40(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.46(6 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{s}), 3.51(1 \mathrm{H}, \mathrm{dd}$, $J 2.0,10.0 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{dd}, J, 1.5,12.0 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{d}, J 1.5$ $\mathrm{Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.91(1 \mathrm{H}, \mathrm{dd}, J 2.0,10.0 \mathrm{~Hz}), 3.93(1 \mathrm{H}, \mathrm{dd}, J$ $2.0,12.0 \mathrm{~Hz}), 4.18(1 \mathrm{H}, \mathrm{dd}, J 3.0,12.0 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{d}, J 2.0 \mathrm{~Hz})$, $6.83(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, and $7.36(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}) ; m / z 621$ ( $M^{+}-15,30 \%$ ) 151 (60), 135 (88), and 43 (100).

The diacetate of compound (13) was an oil, $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ 1735 sh and $1725 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 0.90$ $(3 \mathrm{H}, \mathrm{s}), 1.01(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.03(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.06(3 \mathrm{H}, \mathrm{d}$, $J 7.0 \mathrm{~Hz}), 1.11(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.3-2.1(8 \mathrm{H}, \mathrm{m})$, $1.42(6 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}), 2.09(6 \mathrm{H}, \mathrm{s})$, $3.38(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{dd}, J 1.5,11.5 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{br}$ s), $3.80(3 \mathrm{H}, \mathrm{s}), 3.88(1 \mathrm{H}, \mathrm{dd}, J 2.5,9.0 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{dd}, J 2.0$, 11.5 Hz ), $4.85(1 \mathrm{H}, \mathrm{dd}, J 3.0,9.5 \mathrm{~Hz}), 5.19(1 \mathrm{H}, \mathrm{dd}, J 2.0,10.0$
$\mathrm{Hz}), 6.84(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}$ ), and $7.44(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}) ; m / z 705$ $\left(M^{+}-15,65 \%\right), 151(40), 135(100)$, and 129 (90).
(2S,3R,4S,5R,6R,8R,9S,10S,11R,12R,13R)-1,3,5,6-Tetra-hydroxy-11,12-isopropylidenedioxy-9,13-bis(4-methoxybenzyl-oxy)-2,4,6,8,10,12-hexamethylpentadecane (14).-A THF (1 ml) solution of compound (13) ( $406 \mathrm{mg}, 0.64 \mathrm{mmol}$ ) was added to a stirred dimsylsodium solution prepared from $50 \% \mathrm{NaH}(245$ $\mathrm{mg}, 5.1 \mathrm{mmol}$ ) and dimethyl sulphoxide ( 10 ml ) at room temperature under argon. After 1 h , a THF ( 1 ml ) solution of MPMCl ( $798 \mathrm{mg}, 5.1 \mathrm{mmol}$ ) was added in five portions at $50^{\circ} \mathrm{C}$ during 40 min . The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for an additional 1.5 h , then poured into ice-water containing $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure. The residue was chromatographed on a silica gel column with benzene-EtOAc ( $10: 1$ ) as eluant to give the di-MPM ether of compound (13) ( 210 mg ) and mono-MPM ethers (two isomers, 307 mg ). The mixture of mono-MPM ethers was treated again with MPMCl as described above to give the di-MPM ether ( 398 $\mathrm{mg})$ as an oil, $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.91(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 0.91(3 \mathrm{H}, \mathrm{s}), 0.93$ $(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 1.02(6 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.10(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz})$, $1.22(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.40-2.38(8 \mathrm{H}, \mathrm{m}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.45$ $(3 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{s}), 3.21(1 \mathrm{H}, \mathrm{dd}, J 4.5,8.0 \mathrm{~Hz})$, $3.64(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}), 3.72-3.89(3 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.78(3$ $\mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.17(1 \mathrm{H}, \mathrm{dd}, J 2.0,12.0 \mathrm{~Hz}), 4.38(1 \mathrm{H}, \mathrm{d}, J$ $11.0 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{s}), 4.57-4.71(2 \mathrm{H}, \mathrm{ABq}, J 11.0 \mathrm{~Hz}), 4.69(1$ $\mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}), 6.77(4 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}), 6.85(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, $7.18(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}), 7.25(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, and $7.45(2 \mathrm{H}, \mathrm{d}, J$ 9.0 Hz ); $m / z 861\left(M^{+}-15,0.3 \%\right), 755(0.3), 619(0.6)$, and 121 (100).

The combined di-MPM ether ( 608 mg ) was dissolved in THF ( 25 ml ) and $0.4 \mathrm{M}-\mathrm{HCl}(10 \mathrm{ml})$, and the solution was stirred at $50^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was neutralized with $\mathrm{NaHCO}_{3}$ and evaporated under reduced pressure. The residue was chromatographed on a silica gel column with EtOAc as eluant to give the oily product (14) ( $262 \mathrm{mg}, 58.3 \%$ ) (Found: $M^{+}$ $+\mathrm{H}, 705.4562 . \mathrm{C}_{40} \mathrm{H}_{65} \mathrm{O}_{10}$ requires $m / z, 705.4560$ ) (Found: $M^{+}-\mathrm{CH}_{3}, 689.4254 . \mathrm{C}_{39} \mathrm{H}_{61} \mathrm{O}_{10}$ requires $\mathrm{m} / \mathrm{z}$, 689.4248); $[\alpha]_{\mathrm{D}}{ }^{23}+20.6^{\circ}\left(c 3.92\right.$ in $\left.^{2} \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) 0.95(3 \mathrm{H}, \mathrm{t}, J$ $7.5 \mathrm{~Hz}), 0.98(6 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.00(3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}), 1.04(3 \mathrm{H}$, $\mathrm{d}, J 7.0 \mathrm{~Hz}), 1.16(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.4-2.2(8 \mathrm{H}$, $\mathrm{m}), 1.46(3 \mathrm{H}, \mathrm{s}), 3.18(1 \mathrm{H}, \mathrm{dd}, J 6.0,7.0 \mathrm{~Hz}), 3.35(1 \mathrm{H}, \mathrm{dd}, J 2.0$, $9.0 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{br}$ s), $3.58(1 \mathrm{H}, \mathrm{s}), 3.61(1 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{dd}, J$ $3.0,7.0 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 4.37(1 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz})$, $4.47(1 \mathrm{H}, \mathrm{s}), 4.52(2 \mathrm{H}, \mathrm{s}), 4.69(1 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}), 6.74(2 \mathrm{H}, \mathrm{d}, J$ $8.5 \mathrm{~Hz}), 6.81(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}), 7.21(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz})$, and $7.24(2$ $\mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}) ; m / z 705\left(M^{+}+1,0.0002 \%\right), 689(0.003), 447$ (0.1), 341 (0.4), 279 (1.4), 149 (41), and 121 (100).

The $1,3,5$-triacetate of (14) was an oil, $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1735 \mathrm{sh}$ and $1725 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 0.89(3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}), 0.91(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz})$, $0.92(6 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.20(3$ $\mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.4-2.2(8 \mathrm{H}, \mathrm{m}), 1.46(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s})$, $2.05(3 \mathrm{H}, \mathrm{s}), 2.06(3 \mathrm{H}, \mathrm{s}), 3.20(1 \mathrm{H}, \mathrm{dd}, J 5.0,7.0 \mathrm{~Hz}), 3.39(1 \mathrm{H}$, dd, $J 2.0,9.0 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}), 3.77(6 \mathrm{H}, \mathrm{s}), 3.89(2 \mathrm{H}, \mathrm{d}$, $J 6.5 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}), 4.46(2 \mathrm{H}, \mathrm{s}), 4.57(1 \mathrm{H}, \mathrm{d}, J 11.0$ $\mathrm{Hz}), 4.67(1 \mathrm{H}, \mathrm{s}), 4.69(1 \mathrm{H}, \mathrm{d}, J 10.5 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{dd}, J 5.0,7.0$ $\mathrm{Hz}), 6.75(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}), 6.80(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{d}, J$ $9.0 \mathrm{~Hz})$, and $7.23(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}) ; m / z 505\left(M^{+}-325,0.5 \%\right)$, 371 (2), and 121 (100).

Lead Tetra-acetate Cleavage of Compound (14) to give ( $4 \mathrm{R}, 5 \mathrm{~S}, 6 \mathrm{~S}, 7 \mathrm{R}, 8 \mathrm{R}, 9 \mathrm{R}$ )-7,8-Isopropylidenedioxy-5,9-bis(4-meth-oxybenzyloxy)-4,6,8-trimethylundecan-2-one (15) and 2,4-Dideoxy-2,4-di-C-methyl- $\alpha$-and $\beta$-L-xylo-pentopyranose (16).$\mathrm{Pb}(\mathrm{OAc})_{4}(637 \mathrm{mg}, 1.44 \mathrm{mmol})$ was added to a stirred benzene ( 13 ml ) solution of compound (14) $(675 \mathrm{mg}, 0.96 \mathrm{mmol})$ at room temperature. After 15 min , the reaction mixture was
chromatographed on a silica gel column with n-hexane-EtOAc (3:2) as eluant to give two fractions. The first fraction was the oily undecanone (15) ( $530 \mathrm{mg}, 99.4 \%$ ) (Found: $M^{+}-$ $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 435.2735 . \mathrm{C}_{25} \mathrm{H}_{39} \mathrm{O}_{6}$ requires $m / z, 435.2736$ ); $[\alpha]_{\mathrm{D}}{ }^{18}+7.9^{\circ}\left(c 1.84\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1710 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ $0.81(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 0.93(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{d}, J 7.0$ Hz ), $1.21(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.4-1.7(2 \mathrm{H}, \mathrm{m}), 1.47(3 \mathrm{H}, \mathrm{s})$, $2.00(1 \mathrm{H}, \mathrm{m}), 2.10(3 \mathrm{H}, \mathrm{s}), 2.3-2.6(3 \mathrm{H}, \mathrm{m}), 3.19(1 \mathrm{H}, \mathrm{t}, J 8.0$ $\mathrm{Hz}), 3.20(1 \mathrm{H}, \mathrm{dd}, J 2.0,8.0 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 4.30$ $(1 \mathrm{H}, \mathrm{d}, J 10.5 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{d}, J 11.5 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{s}), 4.55(1$ $\mathrm{H}, \mathrm{d}, J 11.5 \mathrm{~Hz}), 4.67(1 \mathrm{H}, \mathrm{d}, J 10.5 \mathrm{~Hz}), 6.78(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, $6.79(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}), 7.19(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, and $7.24(2 \mathrm{H}, \mathrm{d}, J$ 9.0 Hz ); $m / z 541\left(M^{+}-15,0.15 \%\right.$ ), $435(0.3), 354(0.2), 319$ (0.6), 299 (2.8), 242 (1.5), and 121 (100).

The second fraction was the solid pyranose (16) $(137 \mathrm{mg}$, $98 \%$ ), which was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$-light petroleum (b.p. $30-70^{\circ} \mathrm{C}$ ) to give granules, m.p. $112-114^{\circ} \mathrm{C}$ (Found: C, $57.5 ; \mathrm{H}, 9.5 . \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 57.51 ; \mathrm{H}, 9.65 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{24}$ $-46.1^{\circ}(c 5.4$ in MeOH$) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.93(1.5 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 0.95$ $(1.5 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.07(1.5 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.12(1.5 \mathrm{H}, \mathrm{d}, J 7.0$ $\mathrm{Hz}), 1.3-1.9(3 \mathrm{H}, \mathrm{m}), 2.14(0.5 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.82(0.5 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.91(0.5$ $\mathrm{H}, \mathrm{t}, J 10.0 \mathrm{~Hz}), 3.11(0.5 \mathrm{H}, \mathrm{t}, J 11.5 \mathrm{~Hz}), 3.35(0.5 \mathrm{H}, \mathrm{t}, J 10.0$ $\mathrm{Hz}), 3.53(0.5 \mathrm{H}, \mathrm{dd}, J 5.5,12.0 \mathrm{~Hz}), 3.68(0.5 \mathrm{H}, \mathrm{t}, J 11.5 \mathrm{~Hz}), 3.86$ $(0.5 \mathrm{H}, \mathrm{dd}, J 5.0,12.0 \mathrm{~Hz}), 4.33(0.5 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz})$, and $5.14(0.5$ $\mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}$ ).

2RS,4R,5S,6S,7R,8R,9R)-2-Hydroxy-7,8-isopropylidenedi-oxy-5,9-bis(4-methoxybenzyloxy)-4,6,8-trimethyl-2-phenylundecane (17).- $\mathrm{An}_{2} \mathrm{O}$ ( 1.5 ml ) solution of the undecanone (15) $(100 \mathrm{mg}, 0.37 \mathrm{mmol})$ was added dropwise to a stirred $\mathrm{Et}_{2} \mathrm{O}$ ( 1 ml ) solution of $\mathrm{PhMgBr}(0.91 \mathrm{mmol})$, prepared from phenyl bromide ( $143 \mathrm{mg}, 0.91 \mathrm{mmol}$ ) and $\mathbf{M g}$ ( $22 \mathrm{mg}, 0.91 \mathrm{mg}$-atom), at $0^{\circ} \mathrm{C}$ under argon. After 30 min , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was evaporated under reduced pressure and the residue was chromatographed on a silica gel column with n-hexane-EtOAc (3:1) as eluant to give the oily benzyl alcohol (17) ( $112 \mathrm{mg}, 98.2 \%$ ) (Found: $M^{+}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$, $513.3210 . \mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{6}$ requires $m / z, 513.3204$ ); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.78$ $(1.5 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 0.82(1.5 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 0.89(1.5 \mathrm{H}, \mathrm{d}, J 7.0$ $\mathrm{Hz}), 0.92(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}), 0.94(1.5 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.16(1.5 \mathrm{H}$, s), $1.21(1.5 \mathrm{H}, \mathrm{s}), 1.32(1.5 \mathrm{H}, \mathrm{s}), 1.34(1.5 \mathrm{H}, \mathrm{s}), 1.4-2.2(6 \mathrm{H}, \mathrm{m})$, $1.44(1.5 \mathrm{H}, \mathrm{s}), 1.45(1.5 \mathrm{H}, \mathrm{s}), 1.46(1.5 \mathrm{H}, \mathrm{s}), 1.53(1.5 \mathrm{H}, \mathrm{s})$, $3.10-3.21(2 \mathrm{H}, \mathrm{m}), 3.26(1 \mathrm{H}, \mathrm{s}), 3.76(4.5 \mathrm{H}, \mathrm{s}), 3.77(1.5 \mathrm{H}, \mathrm{s})$, $4.32(1 \mathrm{H}, \mathrm{s}), 4.37(0.5 \mathrm{H}, \mathrm{s}), 4.40(1 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}), 4.41(0.5 \mathrm{H}$, s), $4.43(1 \mathrm{H}, \mathrm{s}), 4.63(0.5 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}), 4.73(0.5 \mathrm{H}, \mathrm{d}, J 11.0$ $\mathrm{Hz}), 6.71(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{d}, J$ $9.0 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, and $7.17-7.43(9 \mathrm{H}, \mathrm{m}) ; m / z 513$ $\left(M^{+}-121,0.25 \%\right), 437(0.7), 379(0.7), 301$ (17), and 121 (100).

Mixture (18) of (4R,5S,6S,7R,8R,9R)-7,8-Isopropyl-idenedioxy-5,9-bis(4-methoxybenzyloxy-4,6,8-trimethyl-2-
phenylundec-1-ene and ( $2 \mathrm{E}, 4 \mathrm{R}, 5 \mathrm{~S}, 6 \mathrm{~S}, 7 \mathrm{R}, 8 \mathrm{R}, 9 \mathrm{R}$ )-7,8-Isopropyl-idenedioxy-5,9-bis(4-methoxybenzyloxy)-4,6,8-trimethyl-2-
phenylundec-2-ene.-A benzene ( 12 ml ) solution of compound (17) ( $270 \mathrm{mg}, 0.425 \mathrm{mmol}$ ), $\mathrm{Et}_{3} \mathrm{~N}$ ( $300 \mathrm{mg}, 2.96 \mathrm{mmol}$ ), $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(443 \mathrm{mg}, 2.11 \mathrm{mmol})$, and DMAP ( 30 mg ) was heated under reflux for 1 h . The reaction mixture was washed successively with dilute HCl and saturated aqueous $\mathrm{NaHCO}_{3}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure to leave an oil, which was chromatographed on a silica gel column with $n$-hexane- $\mathrm{Et}_{2} \mathrm{O}(3: 1)$ as eluant to give the oily mixture of alkenes (18) ( $220 \mathrm{mg}, 83.9 \%$ ). Mixture ( $\mathbf{1 8 \text { ) was a } 1 : 2 . 4 \text { mixture }}$ of endo and exo isomers with respect to the olefinic double bond; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.80(2.1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 0.82(2.1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz})$, $0.92(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 1.00(0.9 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}), 1.06(0.9 \mathrm{H}, \mathrm{d}, J 7.0$ $\mathrm{Hz}), 1.16(2.1 \mathrm{H}, \mathrm{s}), 1.22(0.9 \mathrm{H}, \mathrm{s}), 1.29(2.1 \mathrm{H}, \mathrm{s}), 1.36(0.9 \mathrm{H}, \mathrm{s})$, $1.4-2.1(3.7 \mathrm{H}, \mathrm{m}), 1.44(2.1 \mathrm{H}, \mathrm{s}), 1.47(0.9 \mathrm{H}, \mathrm{s}), 2.06(0.9 \mathrm{H}, \mathrm{d}, J$
$1.0 \mathrm{~Hz}), 2.49(0.7 \mathrm{H}, \mathrm{dd}, J 8.0,14.0 \mathrm{~Hz}), 2.75(0.7 \mathrm{H}, \mathrm{dd}, J 6.0,14.0$ $\mathrm{Hz}), 2.81-3.00(0.3 \mathrm{H}, \mathrm{m}), 3.14(0.7 \mathrm{H}$, dd, J 3.0, 8.0 Hz$), 3.18$ $(0.3 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}), 3.29(0.7 \mathrm{H}, \mathrm{dd}, J 1.5,10.0 \mathrm{~Hz}), 3.34(0.3 \mathrm{H}$, dd, $J 2.5,10.0 \mathrm{~Hz}$ ), 3.76, 3.77, 3.79 (total 6 H , each s), $4.34-4.69$ ( 5 H, m), 5.03 ( $0.7 \mathrm{H}, \mathrm{br} \mathrm{s}$ ), $5.30(0.7 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}), 5.82(0.3 \mathrm{H}, \mathrm{dd}, J$ $1.5,9.5 \mathrm{~Hz}), 6.73-6.81(4 \mathrm{H}, \mathrm{m})$, and $7.18-7.37(9 \mathrm{H}, \mathrm{m})$; $v_{\text {max }}$. $\left(\mathrm{CHCl}_{3}\right) 1610 \mathrm{~cm}^{-1}$.
(2RS,3RS,4R,5S,6S,7R,8R,9R)-2,3-Dihydroxy-7,8-isopropyl-idenedioxy-5,9-bis(4-methoxybenzyloxy)-4,6,8-trimethyl-2phenylundecane (19) and (2RS,4R,5S,6S,7R,8R,9R)-1,2-Dihy-droxy-7,8-isopropylidenedioxy-5,9-bis(4-methoxybenzyloxy)-4,6,8-trimethyl-2-phenylundecane (20).-NMO monohydrate $(70 \mathrm{mg}, 0.52 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(4 \mathrm{mg})$ were added to a stirred $4: 1$ acetone-water ( 5 ml ) solution of alkenes (18) $(220 \mathrm{mg}, 0.357$ mmol ) at room temperature. The reaction mixture was stirred overnight and then quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$. Precipitates were filtered off through a Celite pad, and the filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed successively with dilute HCl and water, and evaporated under reduced pressure. The residue was chromatographed on a silica gel column with n-hexane-EtOAc (3:1) as eluant to give two fractions. The first fraction was the diol (19) as an oil ( $49 \mathrm{mg}, 21 \%$ ) (Found: $M^{+}$ $-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, \quad 529.3205$. $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{7}$ requires $\mathrm{m} / \mathrm{z}$, 529.3153 ); $m / z 529\left(M^{+}-121,0.15 \%\right.$ ), 511 ( 0.25 ), 374 (2), and 121 (100).
The second fraction was the isomeric diol (20) as an oil (130 $\mathrm{mg}, \quad 56 \%$ ) (Found: $M^{+}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, \quad 529.3173$. $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{7}$ requires $m / z, 529.3153$ ); $m / z 529\left(M^{+}-121,0.15 \%\right.$ ), 511 (0.25), 395 (5), 393 (5), 374 (6), and 121 (100).
(2S,3R,4S,5R,6R,7R)-5,6-Isopropylidenedioxy-3,7-bis(4-methoxybenzyloxy)-2,4,6-trimethylnonanal (21)- $-\mathrm{Pb}(\mathrm{OAc})_{4}(98$ $\mathrm{mg}, 0.22 \mathrm{mmol}$ ) was added to a stirred benzene solution ( 9 ml ) of the diol (19) $(130 \mathrm{mg}, 0.2 \mathrm{mmol})$ at room temperature. After 10 min , the reaction mixture was chromatographed on a silica gel coiumn with a n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1) as eluant to give the oily aldehyde (21) ( $87.7 \mathrm{mg}, 82.7 \%$ ) (Found: $M^{+}$ $-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$, 407.2438. $\quad \mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{6}$ requires $\mathrm{m} / \mathrm{z}$, $407.2424)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.94(3 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{d}, J 7.0$ $\mathrm{Hz}), 1.08(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.4-1.7(2$ $\mathrm{H}, \mathrm{m}), 1.82(1 \mathrm{H}, \mathrm{m}), 1.47(3 \mathrm{H}, \mathrm{s}), 2.10(1 \mathrm{H}$, quintet, $J 8.0 \mathrm{~Hz})$, $2.60(1 \mathrm{H}, \mathrm{dq}, J 3.0,6.5 \mathrm{~Hz}$ ), $3.19(1 \mathrm{H}, \mathrm{dd}, J 6.5,8.0 \mathrm{~Hz}$ ), 3.76 ( 6 $\mathrm{H}, \mathrm{s}), 3.90(1 \mathrm{H}, \mathrm{dd}, J 3.5,9.0 \mathrm{~Hz}), 4.25(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}), 4.27(1$ $\mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{s}), 4.43(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}), 4.55(1 \mathrm{H}$, d, $J 10.0 \mathrm{~Hz}$ ), $6.72(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}), 6.78(2 \mathrm{H}, \mathrm{d}, J 3.5 \mathrm{~Hz}), 7.16$ $(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz})$, and $9.78(1 \mathrm{H}, \mathrm{s}) ; m / z$ $407\left(M^{+}-121,1 \%\right), 349(0.5)$, and 121 (100).

## (2R,3S,4S,5R,6R,7R))-1-Hydroxy-5,6-isopropylidenedioxy-

 3,7-bis(4-methoxybenzyloxy)-2,4,6-trimethylnonane (3).-$\mathrm{NaBH}_{4}(4 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added to a stirred MeOH solution of the aldehyde (21) ( $28 \mathrm{mg}, 0.053 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. After 20 min , the MeOH was evaporated under reduced pressure, and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the extract was washed successively with cold $2 \mathrm{M}-\mathrm{HCl}$ and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent under reduced pressure left the oily alcohol (3) ( $26 \mathrm{mg}, 93 \%$ ) (Found: $M^{+}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$, 409.2557. Calc. for $\left.\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{6}: m / z, 409.2580\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.83$ $(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 0.94(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz})$, $1.22(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.4-1.7(3 \mathrm{H}, \mathrm{m}), 1.47(3 \mathrm{H}, \mathrm{s}), 1.93-$ $2.18(2 \mathrm{H}, \mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{dd}, J 4.5,7.5 \mathrm{~Hz}), 3.51(1 \mathrm{H}, \mathrm{dd}, J 2.0,9.0$ $\mathrm{Hz}), 3.60(2 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 4.37(1 \mathrm{H}$, d, $J 10.5 \mathrm{~Hz}$ ), $4.41(1 \mathrm{H}, \mathrm{d}, J 10.5 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{s}), 4.56(1 \mathrm{H}, \mathrm{d}, J$ $10.5 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{d}, J 10.5 \mathrm{~Hz}), 6.76(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}), 6.80(2$ $\mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}), 7.21(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$, and $7.24(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz})$; $m / z 409\left(M^{+}-121,0.75 \%\right.$ ), 351 (0.25), 349 (0.25), 273 (3), and 121 (100); $[\alpha]_{\mathrm{D}}{ }^{14}+12.8^{\circ}\left(c 0.28\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.(2R,4S)-1,3,5-Triacetoxy-2,4-dimethylpentane (22).-- $\mathrm{LiAlH}_{4}$ ( $12 \mathrm{mg}, 0.33 \mathrm{mmol}$ ) was added to a stirred THF ( 1 ml ) solution of the pyranose ( 16 ) $(12 \mathrm{mg}, 0.082 \mathrm{mmol})$ at room temperature under argon. After 2 h , water was added to decompose excess of $\mathrm{LiAlH}_{4}$, and the reaction mixture was passed through a short silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(10: 1)$ as eluant to give the oily triol ( 11 mg ). The oil ( 10 mg ) was acetylated as described above to give the triacetate (22) as an oil ( $17 \mathrm{mg}, 92 \%$ ), $[\alpha]_{\mathrm{D}}{ }^{20} 0^{\circ}$ (c 0.68 in $\mathrm{CHCl}_{3}$ ); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1730 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.96(6$ $\mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}$ ), $2.06(6 \mathrm{H}, \mathrm{s}), 2.07(3 \mathrm{H}, \mathrm{s}), 2.04-2.23(2 \mathrm{H}, \mathrm{m})$, $3.90,3.97$ ( 2 H each, dABq, $J 7.0,11.0 \mathrm{~Hz}$ ), and $5.04(1 \mathrm{H}, \mathrm{t}, J 5.5$ $\mathrm{Hz}) ; m / z 173\left(M^{+}-101,14 \%\right), 131$ (24), 113 (21), 71 (31), and 43 (100).
(2S,3R,4R,5R,6R,8R,9S,10S,11R,12R,13R)-5,6,9,13-Tetra-hydroxy-1,3:11,12-bis(isopropylidenedioxy)-2,4,6,8,10,12hexamethylpentadecane (23). -Na ( $0.42 \mathrm{~g}, 18 \mathrm{mg}$-atom) was added to a stirred liquid $\mathrm{NH}_{3}(\mathrm{ca} .60 \mathrm{ml})$ solution of the diol (13) $(1.2 \mathrm{~g}, 1.89 \mathrm{mmol})$ at between -60 and $-55^{\circ} \mathrm{C}$. After 1 h , $\mathrm{NH}_{4} \mathrm{Cl}(1.2 \mathrm{~g})$ was added, and then the liquid $\mathrm{NH}_{3}$ was allowed to evaporate. The residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the extract was evaporated under reduced pressure and chromatographed on a silica gel column with $n$-hexane-EtOAc (3:2) as eluant to give the tetraol (23) as an amorphous solid ( 665 mg , $69.9 \%$ ) (Found: $M^{+}-\mathrm{CH}_{3}, 489.3429 . \mathrm{C}_{26} \mathrm{H}_{49} \mathrm{O}_{8}$ requires $\mathrm{m} / \mathrm{z}$, 489.3414 ); $[\alpha]_{\mathrm{D}}{ }^{23}-20.2^{\circ}$ (c 4.8 in $\mathrm{CHCl}_{3}$ ); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right)$ $0.86(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{d}, J 6.5$ $\mathrm{Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 1.08(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.12(3 \mathrm{H}, \mathrm{s})$, $1.26(3 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{s}), 1.4-2.1(8 \mathrm{H}, \mathrm{m}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.43(6$ $\mathrm{H}, \mathrm{s}), 3.35(1 \mathrm{H}, \mathrm{s}), 3.40(1 \mathrm{H}, \mathrm{dd}, J 2.0,10.5 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{d}, J$ 11.5 Hz ), $3.80(1 \mathrm{H}$, dd, $J 2.5,7.5 \mathrm{~Hz}$ ), $3.85(1 \mathrm{H}, \mathrm{dd}, J 1.5,8.5 \mathrm{~Hz}$ ), $4.10(1 \mathrm{H}, \mathrm{dd}, J 2.5,11.5 \mathrm{~Hz})$, and $4.19(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}) ; m / z 489$ ( $M^{+}-15,0.2 \%$ ), 369 (4.5), 299 (8), 244 (44), 59 (73), and 43 (100).

The triacetate of (23) was an oil, $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}, \mathrm{t}, J 7.0$ Hz ), $0.91(3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}), 1.03(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.05(3 \mathrm{H}, \mathrm{d}, J$ $7.5 \mathrm{~Hz}), 1.08(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.19(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{s}), 1.24$ ( 3 $\mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.4-2.3(8 \mathrm{H}, \mathrm{m})$, 2.08 ( $3 \mathrm{H}, \mathrm{s}$ ), 2.11 ( $3 \mathrm{H}, \mathrm{s}$ ), $2.16(3 \mathrm{H}, \mathrm{s}), 2.64(1 \mathrm{H}, \mathrm{s}), 3.42(1 \mathrm{H}, \mathrm{dd}$, $J 2.0,10.5 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dd}, J 1.5,11.5 \mathrm{~Hz}), 3.69(1 \mathrm{H}, \mathrm{s}), 4.00(1$ $\mathrm{H}, \mathrm{dd}, J 2.5,11.5 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{s}), 4.83(1 \mathrm{H}, \mathrm{dd}, J 3.0,9.5 \mathrm{~Hz})$, and $5.15(1 \mathrm{H}$, dd, $J 1.5,10.5 \mathrm{~Hz}) ; m / z 615\left(M^{+}-15,5 \%\right), 453$ (5.5), 451 (6.5), 283 (10), 223 (20), 129 (40), 97 (35), 86 (30), 59 (35), and $42(100)$; $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1720 \mathrm{~cm}^{-1}$.

Lead Tetra-acetate Cleavage of Compound (23) to give (1S,3R,4R,5R,6S,7S,8R)-3-Ethyl-4,5-isopropylidenedioxy-1,4,6,8-tetramethyl-2,10-dioxabicyclo[5.2.1]octane (24) and (2S,3R,4S)-3,5-Isopropylidenedioxy-2,4-dimethylpentanal (4).$\mathrm{NaHCO}_{3}(370 \mathrm{mg}, 4.4 \mathrm{mmol})$ and $\mathrm{Pb}(\mathrm{OAc})_{4}(488 \mathrm{mg}, 1.1 \mathrm{mmol})$ were added to a stirred benzene $(10 \mathrm{ml})$ solution of the tetraol (23) ( $370 \mathrm{mg}, 0.733 \mathrm{mmol}$ ) at room temperature. After 5 min , the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. The extract was washed successively with $1 \mathrm{M}-\mathrm{HCl}$ ( 3 times), dilute aqueous $\mathrm{NaHCO}_{3}$, and water, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent left an oil, which was chromatographed on a silica gel column with n-hexane-EtOAc (5:1) as eluant to give two fractions. The first fraction was the oily bicycle (24) ( 180 mg , $82 \%$ ) (Found: $M^{+}, 298.2164 . \mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $M, 298.2136$ ); $[\alpha]_{\mathrm{D}}{ }^{24}-1.2^{\circ}\left(c 4.2\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.93(3 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz})$, $0.96(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 1.08(3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}), 1.13(3 \mathrm{H}, \mathrm{s}), 1.33(3$ $\mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.50-1.90(3 \mathrm{H}, \mathrm{m}), 2.00-2.26$ $(2 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}, \mathrm{m}), 3.50(1 \mathrm{H}, \mathrm{dd}, J 2.5,11.0 \mathrm{~Hz}), 3.73(1 \mathrm{H}$, $\mathrm{dd}, J 7.5,9.0 \mathrm{~Hz}$ ), and $3.90(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}) ; m / z 298\left(M^{+}, 5.5 \%\right)$, 283 (6), 240 (24), 99 (49), and 43 (100).

The second fraction was the oily pentanal (4) ( $84 \mathrm{mg}, 62 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{24}+5.4$ (c 3.2 in $\mathrm{CHCl}_{3}$ ); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1720 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}\right) 1.08(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.13(3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}), 1.40(3 \mathrm{H}$,
s), $1.45(3 \mathrm{H}, \mathrm{s}), 1.5-1.8(1 \mathrm{H}, \mathrm{m}), 2.55-2.67(1 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}$, dd, $J 2.0,11.5 \mathrm{~Hz}$ ), $4.08(1 \mathrm{H}$, dd, $J 2.0,9.0 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{dd}, J$ $2.5,11.5 \mathrm{~Hz}$ ), and $9.73(1 \mathrm{H}, \mathrm{d}, J 2.0 \mathrm{~Hz}) ; m / z 171\left(M^{+}-15\right.$, $22 \%$ ), 111 (11), 83 (16), and 59 (100).

3 Parts 3 and 4, Y. Oikawa, T. Nishi, and O. Yonemitsu, J. Chem. Soc., Perkin Trans. 1, 1985, 1, 7.
4 P. H. Jones and E. K. Rowley, J. Org. Chem., 1968, 33, 665.
5 B. H. Lipshutz and M. C. Morey, J. Org. Chem., 1981, 46, 2419.
6 V. Ran Rheenen, R. C. Kelly, and D. Y. Cha, Tetrahedron Lett., 1976, 1973; Org. Synth., 1978, 58, 44.

## References

1 Part 5, Y. Oikawa, T. Nishi, and O. Yonemitsu, preceding paper.
2 Y. Oikawa, T. Yoshioka, and O. Yonemitsu, Tetrahedron Lett., 1982, 23, 885.

